

Lunar Mission timeline

Planetary Missions (Non-Mars, Non-Lunar) timeline

Completed

Discovery Program

Mars evolution: Mars Pathfinder (1996-1997)

Lunar formation: Lunar Prospector (1998-1999)

NEO characteristics: NEAR (1996-1999)

Solar wind sampling: Genesis (2001-2004)

Comet diversity: CONTOUR

Nature of dust/coma: Stardust(1999-2006)

Comet internal structure: Deep Impact (2005-2006)

Mercury environment: MESSENGER (2004-2012)

Main-belt asteroids: Dawn (2007-2015)

Lunar Internal Structure GRAIL (2011-2012)

Discovery Program Firsts

First surface rover to explore another planet (Mars Pathfinder)

First to orbit and land on an asteroid (NEAR)

First look inside a comet (Deep Impact)

First to collect particles from a comet and return them to Earth (Stardust)

First to collect pieces of the Sun and return them to Earth (Genesis)

First purely science mission powered by Ion propulsion (Dawn)

DAWN

DSMCE Program Overview

- Discovery-Scout Mission Capability Enhancement
- Program solicited mission concept proposals for small planetary missions that require the ASRG power source
 - Two Stirling Engines with ~140 Watts each (as GFE)
- Intended to foster science exploration in planetary science by missions enabled by ASRG
- Mission design assistance for these 6 month mission concept studies will be offered by NASA
- Selected 9 proposals out of 40 submitted

Advanced Stirling Radioisotope Generator Engineering Unit

- Operation in space and on surface of atmospherebearing planets and moons
- Characteristics:
 - -≥14 year lifetime
 - -Nominal power: 140 We
 - $-Mass \sim 20 \text{ kg}$
 - System efficiency: ~ 30 %
 - -2 GPHS ("Pu²³⁸ Bricks") modules
 - -Uses 0.8 kg Pu²³⁸
- Final wiring and connections for ASRG engineering unit underway
- Reliability to be demonstrated by the end of 2009

Lockheed Martin/Sunpower

with interconnect sleeve assembly

DSMCE Selections

Baines, Kevin	JPL	Venus	Aerial Vehicle	Polar VALOR: The Feasibility of A Nuclear-Powered Long- Duration Balloon Mission to Explore the Poles of Venus
Elphic, Richard	Los Alamos National Laboratory	Moon	Lander	Locating and Characterizing Lunar Polar Volatiles: Feasibility of a Discovery-Class Mission
Jolliff, Bradley	Washington University	Moon	Rover	Journey to the land of Eternal Darkness and Ice (JEDI): A Lunar Polar Volatile Explorer
Rivkin, Andrew	Applied Physics Lab	Asteroid	Lander	Ilion: An ASRG-Enabled Trojan Asteroid Mission Concept
Hecht, Michael	JPL	Mars	Lander	A tour through Martian history: An ASRG-powered polar ice borehole.
Stofan, Ellen	Proxemy Research	Outer Planets	Lander	Titan Mare Explorer (TiME)
McEwen, Alfred	University of Arizona	Outer Planets	Orbiter	Mission Concept: Io Volcano Observer (IVO)
Sandford, Scott	NASA/AMES	Comet	Sample Return	Concept Study for a Comet Coma Rendezvous Sample Return Mission
Sunshine, Jessica	Univeristy of Maryland	Comet	Lander	Comet Hopper

Mars Mission timeline

Mars Exploration Approach

A CONNECTED SET OF MISSIONS

RESPONSIVE to DISCOVERIES

IN-SITU

(surface)
Experiments and
Reconnaissance

SEEK

Orbital and Airborne

Reconnaissance

- Where to look
- The context
- Foundation datasets
- Finding safe landing sites
- Comm infrastructure

Mars Systems
Science:
The Context for

Biological Potential

SAMPLE

Return rock and soil samples

- Ground-truthing
- Surface reconnaissance
- Seeing under the dust
- Subsurface access

- Definitive testing of hypotheses
- Experiments to test biological potential

New Frontiers Program

1st NF mission New Horizons:

Pluto-Kuiper Belt Mission

Launched January 2006 Arrives July 2015

2nd NF mission JUNO:

Jupiter Polar Orbiter Mission

August 2011 launch

3rd NF mission opportunity

South Pole Aitken Basin Sample Return

Comet Surface Sample Return (CSSR)

> Venus In Situ Explorer (VISE)

Network Science

Trojan/Centaur

Asteroid Sample Return

lo Observer

Ganymede Observer

Cassini-Huygens

Composite of 2005 Enceladus Plume Observations (assuming symmetry about the spin axis)

- Detailed orbital investigation of Saturn, rings, magnetosphere, Titan, and icy satellites
- Launched: October 15, 1997
- Saturn arrival: July 1, 2004
- Huygens probe at Titan: Jan. 14, 2005
- 4 yrs primary mission with 2 yrs extension

The Emergence of Habitable Worlds Around Gas Giants

JEO is designed to stand alone or operate synergistically with ESA JGO

Titian Core Mission Overview

- Objective: Titan orbit, Saturn system and Enceladus
- Orbiter accommodates
 ESA provided in situ elements;
 - Core mission includes lander
 - Sweet spot and Enhanced missions include both lander and Montgolfiere but exceed study cost cap
- Mission Timeline:
 - Launch 9/2016
 - Saturn Arrival 9/2026
 - Saturn Tour; includes 4 Enceladus and 15 Titan flybys
 - Dedicated Titan aerosampling and mapping Orbit
- Focused payload; 6 inst. + RSA

ESA Provided In situ elements

Montgolfiere Balloon

- Release 6 months prior to arrival; <6km/s
- Near equatorial to mid latitude location
- Relay to orbiter and Direct to Earth (DTE) in Saturn tour; relay after TOI
- Floats at 10km (+2 -8 km) altitude
- Circumnavigates the globe
- Lower atmosphere and surface science
- > 6 months earth year life science regmt

Capable Lander

- Would land in lake or dry lake bed at northern latitudes, or mid latitude
- Very similar entry conditions to balloon
- Similar relay options to balloon
- Surface, hydrology and interior science
- >1 earth month (2 Titan days) life for dry landing
 - · >1 hours lake landing, battery power

Mission Architectures Trends

- Continue with flyby and orbit as initial steps
- Will see more multi-element missions for specific planetary bodies
 - Lander/rovers will require orbiting assets
 - Sample return
- Development and use of key technologies
 - In-space propulsion systems
 - Radio isotope power system
- Will require more heavy left capability
- Take advantage of coordinating multi-agency missions

